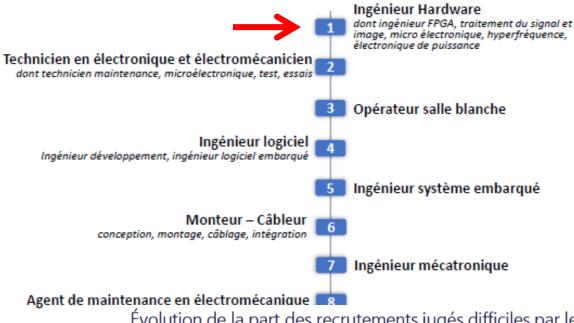
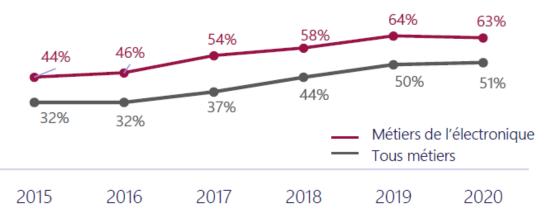


PRÉSENTATION 5^E ANNÉE EMBEDDED SMART POWER ELECTRONICS (ESPE)

Marjorie Grzeskowiak Responsable d'année 5° année ESE grzeskow@insa-toulouse.fr


27 Mars 2024

Perspectives d'emplois ingénieur conception électronique


Filière créatrice d'emploi

- ✓ Augmentation de + de 4.2 % des effectifs
- √ 18000 créations de postes
- √ 17 % des offres sur l'ingénierie

Évolution de la part des recrutements jugés difficiles par les entreprises entre 2015 et 2020

Source : Enquête BMO Pôle Emploi 2015-2020, traitement KYU Lab

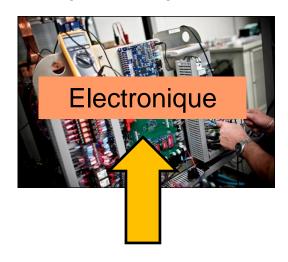
Chiffre 2018-2020 (Comité Stratégique de Filière de l'industrie électronique)

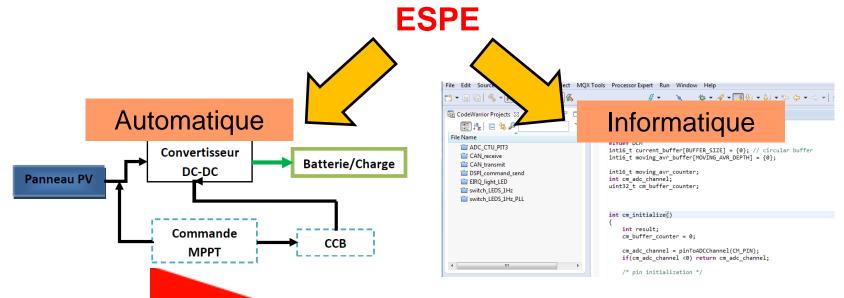
Gestion de l'énergie électrique

- Rôle central de la gestion de l'énergie électrique dans les systèmes électroniques
- Enjeux:
 - Amélioration de l'efficacité énergétique
 - Utilisation optimale des ressources énergétiques disponibles et multiples
 - Favoriser l'utilisation de sources d'énergie renouvelables
 - Accroître l'autonomie énergétique
 - Garantir la fiabilité, robustesse, la sûreté de fonctionnement, la sécurité

Sans une gestion optimale de l'énergie électrique, pas de révolution numérique

Gestion de l'énergie électrique

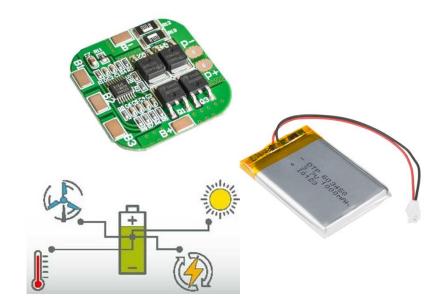

Problème non seulement « hardware », mais aussi « software », dépassant le cadre traditionnel du génie électrique et de l'électronique de puissance


- L'innovation vient aussi de :
 - L'intelligence embarquée
 - La commande optimale pour la conversion énergétique
 - L'architecture électronique, le choix de composants
 - Les capteurs
 - La communication
 - **O**

Objectifs de la formation ESPE

Conception électronique, automatique et logicielle pour améliorer la gestion de l'énergie électrique des systèmes embarquée.

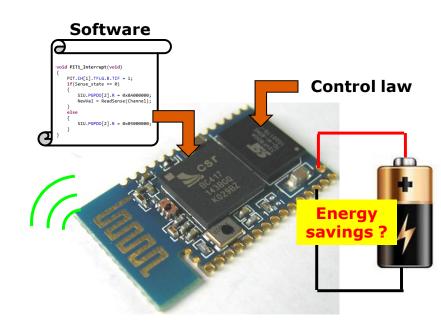
Vue d'ensemble


Embedded Smart Power Electronics										
UF1 : Architecture électronique pour l'énergie	UF2 : Logiciel et automatique embarquée pour l'énergie									
UF3 : Technologie, fabrication et industrialisation des systèmes électroniques	UF4 : Gestion électrique et électronique pour le véhicule électrique									
UF5 : Projet interdisciplinaire										
Formation sciences humaines communes à toutes les 5 ^e années (60 h)										

- Formation basée principalement sous la forme de cours adossés à des bureaux d'étude et des projets en équipe à vocation industrielle
- Large autonomie donnée aux étudiants lors des projets
- Evaluations sur les réalisations, les rapports et soutenances

UF1 : Architecture électronique pour l'énergie

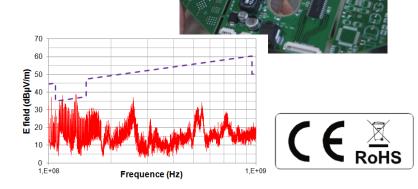
- ✓ déterminer, dimensionner et réaliser l'architecture électronique d'un système embarqué, sélectionner les composants
- ✓ mettre en place les solutions de stockage de l'énergie électrique et leur gestion
- ✓ Mettre en œuvre des solutions de récupération d'énergie



Architecture électronique pour l'énergie	C. Escriba	X	27,5	0	38,5	0		I5AEEE11		66	5
Architecture électronique reconfigurable de convertisseurs d'énergie pour systèmes embarqués	C. Escriba		12,5		11		Soutenance+ Réalisation	E1	0,33	23,5	
Capteurs et instrumentation versatile	C. Escriba		12,5		11		Rapport+ QCM	E2	0,33	23,5	
Récupération de l'énergie électrique	V. Boitier, P. Tounsi		2,5		16,5		Soutenance + TP	E3	0,33	19	

UF2 : Logiciel et automatique embarquée pour l'énergie

- ✓ Synthétiser les commandes pour des convertisseurs statiques d'énergie électrique et les actionneurs électromécaniques
- ✓ Concevoir un logiciel embarqué pour réduire la consommation énergétique de la plateforme programmable
- ✓ Sélectionner une communication sans fil pour accroitre l'autonomie énergétique



Logiciel et automatique embarquée pour l'énergie	G. Garcia	x	21,25	0	27,5	0		I5AELA11		48,75	4
Commande des convertisseurs statiques	G. Garcia		12,5		5,5		TP	E1	0,35	18	
Programmation faible énergie pour l'IOT	A. Boyer + E. Sicard		8,75		13,75		Soutenance + TP	E2	0,35	22,5	
Caractérisation énergétique d'un module IOT	R. Floquet + C. Escriba				8,25		QCM	E3	0,3	8,25	

UF3 : Technologie, fabrication et industrialisation des systèmes électroniques

- ✓ Concevoir une carte électronique, sous contraintes
- ✓ Fiabilité et robustesse des nouveaux composants de puissance
- ✓ Mesurer les performances d'un système électronique (consommation d'énergie, rendement, CEM, adaptation d'impédance)
- ✓ Spécifier et réaliser le processus de certification d'un système électronique

L			 	i	1		ı				
Technologie, fabrication et industrialisation des systèmes embarqués	C. Escriba	x	33,75	0	31,75	0		I5AETE11		65,5	5
Industrialisation et qualification	J. Y. Fourniols		12,5				Soutenance	E1	0,33	12,5	
Conception, Fabrication et assemblage d'un circuit imprimé	C. Escriba		5		8,25		Rapport+ QCM	E2	0,33	13,25	
Stage fabrication circuit imprimé (Micropacc)	C. Escriba				7		Réalisation			7	
Fiabilité/robustesse et nouveaux composants de puissance	P. Tounsi + L. Guillot		8,75				QCM	E3	0,33	8,75	
Packaging et cooling à haute performance	P. Tounsi		7,5				QCM			7,5	
Caractérisation CEM & ESD d'un système embarqué	A. Boyer				5,5		QCM			5,5	
Caractérisation énergétique d'un système embarqué autonome	C. Escriba				11		Rapport			11	

UF4 : Energie électrique pour les transports

- ✓ Choisir l'architecture électronique de chaines de commande d'actionneurs électromécaniques
- ✓ Dimensionner et réaliser la commande d'un actionneur électromécanique pour optimiser le rendement énergétique
- ✓ Dimensionner une architecture électronique et un logiciel embarqué pour garantir la sûreté de fonctionnement

	1		 	1							
Gestion électrique et électronique pour le véhicule électrique	P. Tounsi	x	15	5	35,75	0		I5AEGE11		55,75	5
Moteurs et commandes pour le véhicule électrique	imé + P. Tounsi + G. G	arcia	10		5,5		QCM	E1	0,3	15,5	
Dimensionnement d'un convertisseur d'énergie pour les transports	M. Budinger			5	5,5		Rapport	E2	0,3	10,5	
Introduction safety automobile	F. Galtié		5							5	
BE électronique automobile	P. Tounsi + A. Boyer				24,75		TP + soutenance	E3	0,4	24,75	

UF5 : Projet interdisciplinaire

✓ Projet proposé par un partenaire industriel :

- Projet de réalisation en équipe et en autonomie
- Du cahier des charges, à l'étude et la réalisation d'un prototype
- Points de rencontre réguliers avec l'industriel
- Adossé au cours d'anglais (préparation revues de projet, rapport et soutenance finale)

✓ Exemples de projet :

Développement et validation d'une carte, à base de microcontrôleur STM32, pour la caractérisation en commutation de nouveaux composants GaN pour les applications de conversions d'énergie

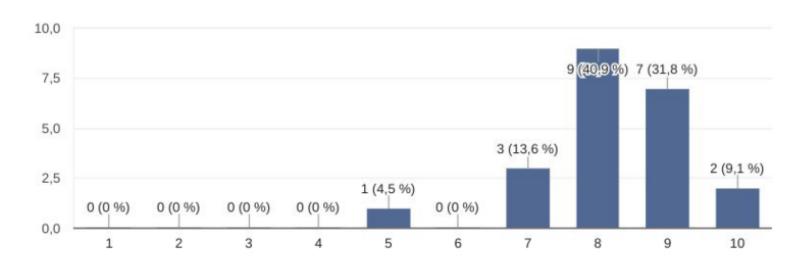
Optimisation de la puissance électrique récupérée avec un thermogénérateur pour alimenter un nœud de capteur sans fil

Projet interdisciplinaire	A. Boyer	×	0	30	38,5	0		I5AEPR11		68,5
Projet	A. Boyer				38,5		Rapport + réalisation + soutenance	E1	0,6	38,5
Anglais	J. Shea			30			ΙE	E2	0,4	30

Stages de PFE

• Les entreprises:

Collins Aerospace



Retour des étudiants

Qu'as-tu pensé du semestre en ESPE en général?

22 réponses

"Globalement satisfait, j'ai trouvé mon compte dans la formation et ai eu l'impression de vraiment développer mes compétences en électronique." "Un semestre chargé mais surmontable."

""Des enseignements de qualité faits dans la convivialité et la bonne humeur! Agréable de travailler dans ce cadre."